Григорий Перельман: многомерная фигура

В основе курса СССР на точные науки, подготовившего почву для достижений ядерной физики, космонавтики и спортивных шахмат, лежала сильная математическая традиция. Оформившись в 1930-х, она подарила миру таких ученых, как Андрей Колмогоров, Александр Гельфонд, Павел Александров и многих других, которые преуспели в традиционных (алгебра, теория чисел) и новых направлениях математики (топология, теория вероятностей, математическая статистика). По масштабам интересов и интеллектуальных ресурсов сравниться с советской могли разве что американская и китайская школы. Но сравнением они не ограничивались: на макроуровне царица наук развивалась в противоречивой обстановке дружелюбной подозрительности. Важную роль такие взаимовлияния сыграли и в профессиональной жизни Григория Перельмана – признанного математического гения, окончательно доказавшего гипотезу Пуанкаре и решившего таким образом одну из семи «задач тысячелетия».

 

Сurriculum vitæ. Первые страницы

 

Григорий Яковлевич Перельман родился 13 июня 1966 года в Ленинграде в семье инженера-электрика и учительницы математики, а спустя десять лет у него появилась сестра – в будущем тоже кандидат (точнее, PhD) математических наук. Помимо любви к классической музыке, привитой матерью, Григорий с детства проявлял интерес к точным наукам: в пятом классе он начал посещать математический центр при Дворце пионеров, а после восьмого перешел в школу № 239 с углубленным изучением математики, которую окончил без золотой медали только из-за недостатка баллов по нормативам ГТО. В 1982 году он в составе школьной команды получил золотую медаль на 23-й Международной математической олимпиаде в Будапеште и вскоре был зачислен на математико-механический факультет Ленинградского государственного университета без сдачи экзаменов. 

 

В вузе за примерную учебу Перельман получал Ленинскую стипендию. Окончив университет с отличием, он поступил в аспирантуру на базе Ленинградского отделения Математического института имени В. А. Стеклова РАН. В 1990 году под научным руководством академика Александра Даниловича Александрова (основоположника так называемой геометрии Александрова – раздела метрической геометрии) Перельман защитил кандидатскую диссертацию на тему «Седловые поверхности в евклидовых пространствах». Затем в должности старшего научного сотрудника продолжил работать в лаборатории математической физики института Стеклова, успешно развивая теорию пространств Александрова.

 

В начале 1990-х Перельману довелось поработать в нескольких уважаемых исследовательских учреждениях США: в Университете штата Нью-Йорк в Стоуни-Брук, Курантовском институте математических наук и Калифорнийском университете в Беркли. 

 

 

Поворотной для молодого математика стала встреча с Ричардом Гамильтоном, область научных интересов которого простиралась в плоскости дифференциальной геометрии – нового направления, широко используемого в общей теории относительности. В своих работах по топологии многообразий американский ученый впервые использовал систему дифференциальных уравнений под названием поток Риччи – нелинейный аналог уравнения теплопроводности, который описывает не распределение температуры, а деформацию хаусдорфова пространства, локально эквивалентного евклидовому.

 

Благодаря этой системе уравнений Гамильтону удалось наметить решение одной из семи «задач тысячелетия» – по сути, разработать подход к доказательству гипотезы Пуанкаре. 

 

Благосклонность зарубежного коллеги и столь фундаментальная проблема произвели на Перельмана большое впечатление. В то время он продолжал сглаживать углы пространств Александрова – технические трудности казались непреодолимыми, и ученый вновь и вновь возвращался к идее потока Риччи. По словам советского математика Михаила Громова, сосредоточившись на этих задачах, Перельман стал еще более аскетичным, что вызывало тревогу у его близких. 

 

В 1994 году он получил приглашение прочесть лекцию на Международном конгрессе математиков в Цюрихе, а сразу несколько научных организаций, в том числе Принстонский и Тель-Авивский университеты, предложили ему место в штате. В ответ на просьбу Стэнфордского университета предоставить резюме и рекомендации ученый заметил: «Если они знают мои работы, им не нужно мое CV. Если же они нуждаются в моем CV, они не знают мои работы». Несмотря на такое обилие заманчивых предложений, в 1995 году он принял решение вернуться в «родной» институт Стеклова. 

 

В 1996-м Европейское математическое общество присудило Перельману его первую международную премию, которую по каким-то причинам он отказался получать. 

 

Помимо непритязательности в быту, пристрастия к музыке (Перельман играет на скрипке) и строгой приверженности научной этике, ученого уже тогда отличал интерес к параллельному решению сложных задач. В 1994 году он доказал гипотезу о душе. В дифференциальной геометрии под «душой» (S) подразумевают компактное тотально выпуклое тотально геодезическое подмногообразие риманова многообразия (M, g). В простейшем случае, то есть в случае евклидова пространства Rn (n отражает мерность), душой будет любая точка этого пространства.

 

Перельман доказал, что душа полного связного риманова многообразия с секционной кривизной K ≥ 0, секционная кривизна одной из точек в котором строго положительна во всех направлениях, является точкой, а само многообразие диффеоморфно Rn. Математиков потрясло редкостное изящество доказательства Перельмана: выкладки заняли всего две страницы, в то время как «доперельмановские» попытки решения излагались в длинных статьях и оставались незавершенными.

 

Доказательство гипотезы Пуанкаре, или Благодатное слияние кухни с операционной

 

На рубеже 19–20 веков гениальный французский математик Анри Пуанкаре увлеченно закладывал фундамент топологии – науки о свойствах пространств, которые остаются неизменными при непрерывных деформациях. В 1900 году ученый предположил, что трехмерное многообразие, все группы гомологий которого как у сферы, гомеоморфно сфере (топологически ей эквивалентно). В общем же случае, для многообразий любой мерности, гипотеза звучит примерно так: всякое односвязное замкнутое n-мерное многообразие гомеоморфно n-мерной сфере. Здесь необходимо хоть немного расшифровать термины, которыми так свободно оперировал Пуанкаре. 

 

 

Двумерное многообразие – это плоскость: например, поверхность сферы или тора («бублика»). Трехмерное многообразие представить сложнее: в качестве одной из его моделей рассматривают додекаэдр, противоположные грани которого особым образом «склеены» друг с другом – отождествлены. Именно для случая трехмерного многообразия гипотеза Пуанкаре оставалась крепким орешком на протяжении целого века. Что касается гомеоморфизма, то любые замкнутые, без дыр, поверхности гомеоморфны, то есть могут непрерывно и однозначно преобразовываться (отображаться) друг в друга и деформироваться в сферу, а вот с тором, например, такое без разрыва поверхности не пройдет, поэтому он негомеоморфен сфере, зато гомеоморфен… кружке – той самой, из кухонного шкафчика. Гомология – понятие, позволяющее строить специфические алгебраические объекты (группы, кольца) для изучения топологических пространств – считается, что общеалгебраические структуры устроены проще, чем топологические. Вот простейшие примеры гомологии: замкнутая линия на поверхности гомологична нулю, если она служит границей какого-то участка этой поверхности; гомологичной нулю является любая замкнутая линия на сфере, у тора же такая линия может и не быть гомологичной нулю. 

 

 

Группы – разнообразные множества, удовлетворяющие особым условиям, – оказались крайне полезными для описания топологических инвариантов – характеристик пространства, не меняющихся при его деформациях. Очень востребованы, в частности, группы гомологий и фундаментальные группы. Группа гомологии ставится в соответствие топологическому пространству для алгебраического исследования его свойств. Фундаментальная группа – это множество закрепленных (начинающихся и заканчивающихся) в отмеченной точке отображений отрезка в пространство (петель), измеряющих количество «дырок» в этом пространстве («дырки» возникают из-за невозможности непрерывно деформировать отрезок в точку). Такая группа представляет собой один из топологических инвариантов: гомеоморфные пространства имеют одну и ту же фундаментальную группу. 

 

 

В первоначальном варианте гипотеза Пуанкаре для трехмерных многообразий оставалась «разрешимой»: она позволяла ослабить условие на фундаментальную группу до условия на группу гомологий. Однако вскоре Пуанкаре исключил это допущение, продемонстрировав пример нестандартной трехмерной гомологической сферы с конечной фундаментальной группой – «сферу Пуанкаре». Такой объект мог быть получен, например, склеиванием каждой грани додекаэдра с противоположной, повернутой на угол π/5 по часовой стрелке. Уникальность сферы Пуанкаре заключается в том, что она гомологична трехмерной сфере, но при этом отличаться от нее в евклидовом пространстве. 

 

В окончательной формулировке гипотеза Пуанкаре звучала следующим образом: всякое односвязное компактное трехмерное многообразие без края гомеоморфно трехмерной сфере. Доказательство этой гипотезы сулило новые возможности для моделирования многомерных пространств. В частности, полученные с помощью космического зонда WMAP данные позволяли рассматривать додекаэдрическое пространство Пуанкаре как возможную математическую модель формы Вселенной. 

 

И вот, в 2002–2003 годах (к тому моменту тематическая переписка Перельмана с Гамильтоном уже сошла на нет) пользователь с ником Grisha Perelman с интервалом в несколько месяцев разместил на сервере препринтов arXiv.org три статьи (1, 2, 3), содержащие решение задачи, еще более общей, чем гипотеза Пуанкаре, – гипотезы геометризации Терстона. И первая же публикация стала международной научной сенсацией, хотя из-за антипатии автора к бюрократии ни одна из статей так и не попала на страницы рецензируемых журналов. Выкладки Перельмана были настолько лаконичны и в то же время сложны, что во всеобщий восторг просто не могло не вкрасться недоверие, поэтому с 2004 по 2006 годы проверку работ Перельмана проводили сразу три группы ученых из США и Китая. 

 

 

Чтобы деформировать риманову метрику на односвязном трехмерном многообразии до гладкой метрики целевого многообразия, Перельман ввел новый метод изучения потока Риччи, который вполне справедливо назвали теорией Гамильтона – Перельмана. Изюминка метода заключалась в том, чтобы при подходе к сингулярности, возникающей при деформации метрики, остановить применяемый к многообразию поток и вырезать «шею» (открытую область, диффеоморфную прямому произведению) или выбросить малую связную компоненту, «заклеив» две полученные «дырки» шарами. По мере повторения этой хирургической операции выбрасывается все, при этом каждый кусок диффеоморфен сферической пространственной форме, а итоговое многообразие является сферой. 

 

В итоге Перельману удалось не только доказать гипотезу Пуанкаре, но и полностью классифицировать компактные трехмерные многообразия. Вероятно, этого никогда бы не случилось, если бы в длинном списке отличительных черт Перельмана не значилась непоколебимая настойчивость. Бывший учитель математики, кандидат физико-математических наук Сергей Рушкин вспоминал: «Гриша начал очень много работать в девятом классе, и у него оказалось очень ценное для занятий математикой качество: способность к очень длительной концентрации внимания без особых успехов внутри задачи.

 

Все-таки человеку нужна психологическая подпитка, нужны психологические успехи, чтобы заниматься чем-то дальше. Фактически гипотеза Пуанкаре – это почти девять лет без знания того, решится задача или не решится. Понимаете, там даже невозможны были частичные результаты. Не доказалась теорема в полном объеме – иной раз можно опубликовать даже двадцатистраничную статью по тому, что все-таки получилось. А там – или пан, или пропал».

 

Вечность в кармане

 

В 2003 году Григорий Перельман принял приглашение прочесть о своих работах серию публичных лекций и докладов в США. Но его не понимали ни студенты, ни коллеги. В течение нескольких месяцев математик терпеливо объяснял, в том числе и в личных беседах, свои методы и идеи. Во время «американского турне» Перельман рассчитывал и на плодотворный разговор с Гамильтоном, но он так и не состоялся. Вернувшись в Россию, ученый продолжил отвечать на сыпавшиеся от математиков вопросы по электронной почте. 

 

В 2005 году, устав от атмосферы публичности, интриг и бесконечных объяснений, связанных с затянувшейся проверкой его выкладок, Перельман уволился из института и фактически оборвал профессиональные связи. 

 

В 2006 году все три группы экспертов признали доказательство гипотезы Пуанкаре состоявшимся, на что китайские математики во главе с Яу Шинтуном, чья фамилия красуется в названии целого класса многообразий (пространств Калаби–Яу), ответили попыткой оспорить приоритет Перельмана. Правда, выбранный для этого инструментарий оказался неудачным: он сильно походил на плагиат. Оригинальная статья учеников Яу, Цао Хуайдуна и Чжу Сипина, занявшая весь июньский номер The Asian Journal of Mathematics, аннотировалась как окончательное доказательство гипотезы Пуанкаре с применением теории Гамильтона – Перельмана. Если верить журналистским расследованиям, то еще перед публикацией этой статьи, открыто курируемой Яу, последний потребовал у 31 математика из редколлегии журнала в кратчайшие сроки прокомментировать ее, однако саму статью тогда почему-то не предоставил. 

 

Яу Шинтун не просто отлично знал Гамильтона, но и сотрудничал с ним, и заявление Перельмана об успешном решении задачи стало для обоих ученых сюрпризом: после долгих лет работы над ней они рассчитывали, несмотря на временную заминку, прийти к финишу первыми. Впоследствии Яу подчеркивал, что препринты Перельмана выглядели неряшливо и невнятно из-за отсутствия подробных расчетов (автор приводил их по мере необходимости в ответ на запросы независимых экспертов), и это мешало ему и всем остальным понять доказательство в полной мере.

 

 

Попытка умалить заслуги Перельмана – а Яу даже любезно подсчитал их в процентном выражении – не удалась, и вскоре китайские ученые подкорректировали заглавие и аннотацию своей статьи. Теперь ее нужно было воспринимать не как свидетельство «венценосного достижения» китайских математиков, а как «самостоятельную и подробную экспозицию» доказательства гипотезы Пуанкаре, произведенного Гамильтоном и Перельманом – без посягательств на чей-то приоритет. Перельман прокомментировал действия Яу так: «Я не могу сказать, что я возмущен, остальные поступают еще хуже…» И правда, китайского математического гения можно понять: ревностную поддержку статьи своих учеников Яу позже объяснял желанием представить окончательное доказательство в удобоваримом, каждому понятном виде и закрепить в истории заслуги соотечественников в решении этой задачи тысячелетия – а ведь их и на самом деле отрицать нельзя… 

 

Тем временем, в августе 2006 года, Перельману присудили Филдсовскую премию «за вклад в геометрию и его революционные идеи в изучении геометрической и аналитической структуры потока Риччи». Но, как и десять лет назад, от награды Перельман отказался, а заодно и сообщил о нежелании далее пребывать в статусе профессионального ученого. В декабре того же года журнал Science впервые признал математическую работу – работу Перельмана – «Прорывом года». Тогда же СМИ разразились серией статей, освещающих это достижение, правда, с упором на сопровождавший его конфликт. Для защиты своей позиции Яу обратился к адвокатам и пригрозил судом «опорочившим его имя» журналистам, однако угрозу так и не осуществил. 

 

В 2007 году Перельман занял девятое место в рейтинге «Сто ныне живущих гениев», опубликованном в The Daily Telegraph. А спустя три года Математический институт Клэя присудил за решение задачи тысячелетия «Премию тысячелетия» – впервые в истории. Поначалу премию в один миллион долларов Перельман проигнорировал, а затем официально отверг: «Если говорить совсем коротко, то главная причина – это несогласие с организованным математическим сообществом. Мне не нравятся их решения, я считаю их несправедливыми. Я считаю, что вклад в решение этой задачи американского математика Гамильтона ничуть не меньше, чем мой». 

 

 

В 2011 году «Премию тысячелетия», от которой отказался Перельман, Институт Клэя решил направить на оплату труда молодых, подающих надежды математиков, для которых в парижском Институте Анри Пуанкаре учредили специальную временную должность. Тогда же Ричарду Гамильтону присудили Премию Шао по математике за создание программы решения гипотезы Пуанкаре. Премиальный миллион долларов в тот год пришлось разделить поровну между Гамильтоном и вторым математическим лауреатом, Деметриосом Христодулу. 

 

Доброе отношение к Гамильтону Перельман сохранил, несмотря на несостоявшийся диалог и очевидную неудовлетворенность старшего коллеги финалом этой научной истории. А это многое говорит о человеке. По слухам, Григорий Яковлевич продолжает жить в Санкт-Петербурге, периодически посещая Швецию, где сотрудничает с местной компанией, занимающейся научными разработками. Ну а шесть задач тысячелетия все еще ждут своего гения. 

Источник: naked-science.ru

Вы можете оставить комментарий, или ссылку на Ваш сайт.

Оставить комментарий

Вы должны быть авторизованы, чтобы разместить комментарий.